The mechanism of biosynthesis and direction of chain extension of a polyl-(N-acetylglucosamine 1-phosphate) from the walls of Staphylococcus lactis N.C.T.C. 2102

Author:

Brooks D.1,Baddiley J1

Affiliation:

1. Microbiological Chemistry Research Laboratory, Department of Organic Chemistry, University of Newcastle upon Tyne, NE1 7RU

Abstract

1. The synthesis of a polymer of N-acetylglucosamine 1-phosphate, occurring in the walls of Staphylococcus lactis N.C.T.C. 2102, was examined by using cell-free enzyme preparations. The enzyme system was particulate, and probably represents fragmented cytoplasmic membrane. 2. Uridine diphosphate N-acetylglucosamine was the only substrate required for polymer synthesis and labelled substrate was used to show that N-acetylglucosamine 1-phosphate is transferred as an intact unit from substrate to polymer. 3. The properties of the enzyme system were studied. A high concentration of Mg2+ or Mn2+ was required for optimum activity, and the pH optimum was about 8·5. 4. End-group analysis during synthesis in vitro showed that newly formed chains contain up to about 15 repeating units. Pulse-labelling indicated that chain extension occurs by transfer from the nucleotide to the ‘sugar-end’ of the chain, i.e. to the end that is not attached to peptidoglycan in the wall.

Publisher

Portland Press Ltd.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3