Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats

Author:

Bermano G1,Nicol F1,Dyer J A2,Sunde R A2,Beckett G J3,Arthur J R1,Hesketh J E1

Affiliation:

1. Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, Scotland, U.K.

2. University of Missouri-Columbia, Columbia, MO 65211, U.S.A.

3. Cellular Endocrinology Unit, University Department of Clinical Biochemistry, The Royal Infirmary, Edinburgh EH3 9YW, Scotland, U.K.

Abstract

Regulation of synthesis of the selenoenzymes cytosolic glutathione peroxidase (GSH-Px), phospholipid hydroperoxide glutathione peroxidase (PHGSH-Px) and type-1 iodothyronine 5′-deiodinase (5′IDI) was investigated in liver, thyroid and heart of rats fed on diets containing 0.405, 0.104 (Se-adequate), 0.052, 0.024 or 0.003 mg of Se/kg. Severe Se deficiency (0.003 mg of Se/kg) caused almost total loss of GSH-Px activity and mRNA in liver and heart. 5′IDI activity decreased by 95% in liver and its mRNA by 50%; in the thyroid, activity increased by 15% and mRNA by 95%. PHGSH-Px activity was reduced by 75% in the liver and 60% in the heart but mRNA levels were unchanged; in the thyroid, PHGSH-Px activity was unaffected by Se depletion but its mRNA increased by 52%. Thus there is differential regulation of the three mRNAs and subsequent protein synthesis within and between organs, suggesting both that mechanisms exist to channel Se for synthesis of a particular enzyme and that there is tissue-specific regulation of selenoenzyme mRNAs. During Se depletion, the levels of selenoenzyme mRNA did not necessarily parallel the changes in enzyme activity, suggesting a distinct mechanism for regulating mRNA levels. Nuclear run-off assays with isolated liver nuclei showed severe Se deficiency to have no effect on transcription of the three genes, suggesting that there is post-transcriptional control of the three selenoenzymes, probably involving regulation of mRNA stability.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3