Affiliation:
1. Department of Pharmacology, College of Medicine, The Health Science Center, University of Tennessee, Memphis, 874 Union Avenue, Memphis, TN 38163, U.S.A.
Abstract
Thyroid hormone exerts profound effects on the activity of the hormone-sensitive adenylate cyclase system in the heart. Distinct guanine nucleotide-binding regulatory proteins (G-proteins) mediate stimulatory and inhibitory influences on adenylate cyclase activity. To examine whether the effects of thyroid hormone on adenylate cyclase involve specific changes in G-protein subunit expression, the influence of tri-iodothyronine (T3) on the biosynthesis and activity of G-proteins in neonatal rat ventricular myocytes was determined. In myocytes challenged with T3 for 5 days, Gs alpha levels increased by 4 +/- 0.5-fold, whereas Gi2 alpha levels declined by more than 80%. T3 down-regulated Gi2 alpha mRNA by 60% within 3 days, but had no effect on Gs alpha mRNA. The basis for the decline in Gi2 alpha mRNA was the T3-mediated suppression of Gi2 alpha gene transcription by 80 +/- 9% within 4 h. The decline in Gi2 alpha mRNA in response to T3 produced a 2-fold decrease in relative rate of synthesis of Gi2 alpha but not in its half-life (46 +/- 7 h). Gs alpha synthesis was not altered by T3, but the half-life of Gs alpha increased from 50 +/- 6 h in control cells to 72 +/- 8 h in T3-treated cells. In addition, T3 provoked the translocation of Gs alpha from the cytoplasmic to the membranous compartment. Membranous Gs alpha increased from 30 +/- 6% to 61 +/- 7% of total cellular Gs alpha, whereas cytoplasmic Gs alpha declined from 68 +/- 6% to 33 +/- 8% within 1 day of exposure to T3. T3-mediated up-regulation of Gs alpha enhanced the activation of myocardial adenylate cyclase by the stimulatory pathway whereas the down-regulation of Gi2 alpha attenuated the deactivation of myocardial adenylate cyclase by the inhibitory pathway.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献