Effects of calcium-antagonistic drugs on the stimulation by carbamoylcholine and histamine of phosphatidylinositol turnover in longitudinal smooth muscle of guinea-pig ileum

Author:

Jafferji S S1,Michell R H1

Affiliation:

1. Department of Biochemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT, U.K.

Abstract

A number of drugs classed as calcium antagonists, spasmolytics, non-specific receptor antagonists or receptor antagonists with multiple sites of action were tested to determine whether they prevent the stimulation of phosphatidylinositol turnover caused in various tissues by the activation of receptors which increase cell-surface Ca2+ permeability. The experiments were done with fragments of longitudinal smooth muscle from guinea-pig ileum; these were incubated in vitro with 32Pi and either 100 muM-carbamoylcholine or 100 muM-histamine, in the presence of antagonistic drugs at concentrations at least sufficient to cause complete blockade of smooth-muscle contraction. The phosphatidylinositol response to carbamoylcholine was not changed by cinchocaine, papaverine, nifedipine, dibenamine, amethocaine, cinnarizine, lidoflazine, methoxyverapamil, prenylamine or two antimuscarinic alkane-bis-ammonium compounds, and the response to histamine was unaffected by the first four drugs. In contrast, phenoxybenzamine prevented the increase in phosphatidylinositol labelling caused by either carbamoylcholine or histamine. The insensitivity of the phosphatidylinositol response to most of the drugs provides further experimental support for the conclusion that the receptor-stimulated phosphatidylinositol breakdown which initiates the increase in phosphatidylinositol turnover is not caused by an increase in intracellular Ca2+. The simplest interpretation of the available information appears to be that phosphatidylinositol breakdown plays a role in the coupling between the receptor-agonist interaction and the opening of cell-surface Ca2+ gates [Michell, R. H. (1975) Biochim. Biophys. Acta 415, 81-147]. If this is correct, then phenoxybenzamine must exert its inhibitory effects on phosphatidylinositol breakdown early in this sequence of events, but the drugs must act at a stage later than phosphatidylinositol breakdown. The unexpected difference in the effects of dibenamine and phenoxybenzamine, which are chemically very similar, may provide a useful experimental tool with which to explore the way in which activated receptors provoke the opening of cell-surface Ca2+ gates.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3