Measurement of intracellular Ca2+ in single aequorin-injected and suspensions of fura-2-loaded ROS 17/2.8 cells and normal human osteoblasts. Effect of parathyroid hormone

Author:

Schöfl C1,Cuthbertson K S R2,Gallagher J A2,Pennington S R2,Cobbold P H2,Brabant G1,Hesch R D1,von zur Mühlen A1

Affiliation:

1. Abteilung für Klinische Endokrinologie, Medizinische Hochschule Hannover, Postfach 610181, 3000 Hannover 61, Federal Republic of Germany.

2. Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool, U.K.

Abstract

It is known that parathyroid hormone (PTH) activates the cyclic AMP (cAMP) signalling pathway in osteoblasts. In recent years it has been suggested that an elevation of the intracellular free Ca2+ concentration ([Ca2+]i) may also be involved in the regulation of osteoblast function by PTH. However, this remains controversial. Here we investigated the effect of PTH on the [Ca2+]i of ROS 17/2.8 cells and normal human osteoblasts. The [Ca2+]i was measured in single aequorin-injected cells and in suspensions of cells loaded with fura-2. Human PTH-(1-38)-peptide (1-300 nM) had no effect on the [Ca2+]i in single aequorin-injected ROS 17/2.8 cells (n = 17) measured at various times after injection (1-20 h), or in suspensions of fura-2-loaded ROS 17/2.8 cells (n = 9). Ionomycin (1 microM) increased the [Ca2+]i in fura-2-loaded and single aequorin-injected ROS 17/2.8 cells by 285 +/- 60 nM (n = 9) and 312 +/- 99 nM (n = 6) respectively, indicating that both methods detect changes in [Ca2+]i with equal sensitivity. In contrast, human PTH-(1-38) (10-100 nM) markedly stimulated cAMP accumulation in ROS 17/2.8 cells. In single aequorin-injected normal human osteoblasts there was no change in the [Ca2+]i in response to 100 nM human PTH-(1-38) or 100 nM bovine PTH-(1-84) (n = 18). In contrast, in suspensions of normal human osteoblasts loaded with fura-2, an increase in [Ca2+]i in response to human PTH-(1-38) (100 nM) was found (60 +/- 28 nM; n = 6). Considerable variation in the magnitude of the response was observed between individual preparations and donors. These data indicate that PTH activates cAMP accumulation without affecting [Ca2+]i in ROS 17/2.8 cells and that PTH causes a rise in [Ca2+]i only in a small subset of normal human osteoblasts. We suggest that the Ca2+ response to PTH in osteoblasts is limited by the state of differentiation of the cells, and may be due either to the presence of a distinct Ca2(+)-mobilizing receptor or to a cAMP-mediated Ca2+ response.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3