Site-directed mutagenesis of rat liver S-adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state

Author:

Mingorance J1,Alvarez L1,Sánchez-Góngora E1,Mato J M1,Pajares M A1

Affiliation:

1. Instituto de Investigaciones Biomédicas, CSIC. Arturo Duperier 4, 28029 Madrid, Spain

Abstract

We have examined the functional importance of the cysteine residues of rat liver S-adenosylmethionine synthetase. For this purpose the ten cysteine residues of the molecule were changed to serines by site-directed mutagenesis. Ten recombinant enzyme mutants were obtained by using a bacterial expression system. The same level of expression was obtained for the wild type and mutants, but the ratio of S-adenosylmethionine synthetase between soluble and insoluble fractions differed for some of the mutant forms. The immunoreactivity against an anti-(rat liver S-adenosylmethionine synthetase) antibody was equivalent in all the cases. Effects on S-adenosylmethionine synthetase activities were also measured. Mutants C57S, C69S, C105S and C121S showed decreased relative specific activity of 68, 85, 63 and 29%, respectively, compared with wild-type, whereas C312S resulted in an increase of 1.6-fold. Separation of tetramer and dimer forms for wild type and mutants was carried out by using phenyl-Sepharose columns. The dimer/tetramer ratio was calculated based on the activity and on the protein level estimated by immunoblotting. No monomeric forms of the enzyme were detected in any case. Comparison of dimer/tetramer ratios indicates the importance of cysteine-69 (dimer/tetramer protein ratio of 88 versus 10.2 in the wild type) in maintaining the oligomeric state of rat liver S-adenosylmethionine synthetase. Moreover, all the mutations carried out of cysteine residues between cysteine-35 and cysteine-105 altered the ratio between oligomeric forms.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3