The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria

Author:

Johnson Roger N.1,Hansford Richard G.1

Affiliation:

1. Laboratory of Molecular Aging, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore City Hospitals, Baltimore, MD 21224, U.S.A.

Abstract

1. To determine whether controlled (State 4) pyruvate oxidation can support a high energy state, measurements of the redox span NAD–cytochrome c, phosphorylation potential and protonmotive force (the gradient in electrochemical activity of protons across the mitochondrial inner membrane) were made as indices of energy status. For comparison, these three measurements were also made with glycerol 3-phosphate, an alternative substrate. The two substrates gave essentially identical values for the redox span NAD–cytochrome c in State 4, and the phosphorylation potential was of sufficient magnitude to be considered in equilibrium with the redox span over the first two phosphorylation sites. The magnitude of the protonmotive force in State 4 was much less and the implications of this finding are discussed. 2. Measurements made during the controlled (State 4) to active (State 3) transition indicated that with glycerol 3-phosphate as substrate, both the redox span NAD–cytochrome c and the protonmotive force were diminished; the State 4 → State 3 transition with pyruvate as substrate was accompanied by an increase in the redox span but a decrease in protonmotive force. The contrary behaviour of these two energetic parameters in the presence of pyruvate was ascribed to a transient excess in the flux of protons through the adenosine triphosphatase relative to the protonpumping respiratory chain, in spite of the increased dehydrogenase activity. 3. The lower protonmotive force seen in State 3 relative to State 4 with pyruvate as substrate was due to a diminution of both the electrical (ΔΨ) and the chemical (ΔpH) components; with glycerol 3-phosphate, the magnitude of the decrease in protonmotive force during the State 4 → State 3 transition was similar to that seen with pyruvate, but was due to a large decrease in the electrical component (ΔΨ) and a small rise in the chemical component (ΔpH). The reason for the difference seen in the behaviour of the components of the protonmotive force was investigated but not established. 4. In the presence of oligomycin and ADP, oxidation of pyruvate, but not of glycerol 3-phosphate, supported a greater protonmotive force than in State 4, in keeping with the dehydrogenase activation and increased redox span NAD–cytochrome c found under these conditions. 5. Experiments involving the use of uncoupling agent to stimulate respiration are compared with those in which limiting concentrations of ADP were used. Estimates of the proton conductance of the inner membrane indicate a similar non-linear dependence on uncoupler concentration with the two substrates. 6. A model is proposed as an explanation of the high rates of controlled glycerol 3-phosphate oxidation. The model relies on a high permeability of the inner membrane to protons and other ions being induced by glycerol 3-phosphate oxidation in State 4.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3