Crystallography and protein–protein interactions: biological interfaces and crystal contacts

Author:

Kobe Bostjan12,Guncar Gregor13,Buchholz Rebecca1,Huber Thomas14,Maco Bohumil1,Cowieson Nathan25,Martin Jennifer L.2,Marfori Mary1,Forwood Jade K.16

Affiliation:

1. School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

2. Institute for Molecular Bioscience and Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane, QLD 4072, Australia

3. Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia

4. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

5. Monash Centre for Synchrotron Science, Monash University, Clayton, VIC 3800, Australia

6. School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia

Abstract

Crystallography is commonly used for studying the structures of protein–protein complexes. However, a crystal structure does not define a unique protein–protein interface, and distinguishing a ‘biological interface’ from ‘crystal contacts’ is often not straightforward. A number of computational approaches exist for distinguishing them, but their error rate is high, emphasizing the need to obtain further data on the biological interface using complementary structural and functional approaches. In addition to reviewing the computational and experimental approaches for addressing this problem, we highlight two relevant examples. The first example from our laboratory involves the structure of acyl-CoA thioesterase 7, where each domain of this two-domain protein was crystallized separately, but both yielded a non-functional assembly. The structure of the full-length protein was uncovered using a combination of complementary approaches including chemical cross-linking, analytical ultracentrifugation and mutagenesis. The second example involves the platelet glycoprotein Ibα–thrombin complex. Two groups reported the crystal structures of this complex, but all the interacting interfaces differed between the two structures. Our computational analysis did not fully resolve the reasons for the discrepancies, but provided interesting insights into the system. This review highlights the need to complement crystallographic studies with complementary experimental and computational approaches.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3