Protein phosphatases at the nuclear envelope

Author:

Sales Gil Raquel1,de Castro Ines J.2,Berihun Jerusalem1,Vagnarelli Paola1ORCID

Affiliation:

1. College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K.

2. Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Heidelberg 69120, Germany

Abstract

The nuclear envelope (NE) is a unique topological structure formed by lipid membranes (Inner and Outer Membrane: IM and OM) interrupted by open channels (Nuclear Pore complexes). Besides its well-established structural role in providing a physical separation between the genome and the cytoplasm and regulating the exchanges between the two cellular compartments, it has become quite evident in recent years that the NE also represents a hub for localized signal transduction. Mechanical, stress, or mitogen signals reach the nucleus and trigger the activation of several pathways, many effectors of which are processed at the NE. Therefore, the concept of the NE acting just as a barrier needs to be expanded to embrace all the dynamic processes that are indeed associated with it. In this context, dynamic protein association and turnover coupled to reversible post-translational modifications of NE components can provide important clues on how this integrated cellular machinery functions as a whole. Reversible protein phosphorylation is the most used mechanism to control protein dynamics and association in cells. Keys to the reversibility of the system are protein phosphatases and the regulation of their activity in space and time. As the NE is clearly becoming an interesting compartment for the control and transduction of several signalling pathways, in this review we will focus on the role of Protein Phosphatases at the NE since the significance of this class of proteins in this context has been little explored.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3