Analysis of normal and mutant iduronate-2-sulphatase conformation

Author:

PARKINSON-LAWRENCE Emma1,TURNER Christopher1,HOPWOOD John12,BROOKS Doug12

Affiliation:

1. Lysosomal Diseases Research Unit, Department of Genetic Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia 5006, Australia

2. Department of Paediatrics, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

Mammalian sulphatases (EC 3.1.6) are a family of enzymes that have a high degree of similarity in amino acid sequence, structure and catalytic mechanism. IDS (iduronate-2-sulphatase; EC 3.1.6.13) is a lysosomal exo-sulphatase that belongs to this protein family and is involved in the degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. An IDS deficiency causes the lysosomal storage disorder MPS II (mucopolysaccharidosis type II). To examine the structural alterations in heat-denatured and mutant IDS, a panel of four monoclonal antibodies was raised to the denatured protein and used as probes of protein conformation. The linear sequence epitope reactivity of a polyclonal antibody raised against the native protein and the monoclonal antibodies were defined and mapped to distinct regions on the IDS protein. The antigenicity of native IDS was higher in regions without glycosylation, but reactivity was not restricted to protein surface epitopes. One monoclonal epitope was relatively surface accessible and in close proximity to an N-linked glycosylation site, while three others required additional thermal energy to expose the epitopes. The monoclonal antibodies demonstrated the capacity to differentiate progressive structural changes in IDS and could be used to characterize the severity of MPS type II in patients based on variable denatured microstates.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3