Insertion of the amyloid precursor protein into lipid monolayers: effects of cholesterol and apolipoprotein E

Author:

LAHDO Raghda1,de LA FOURNIÈRE-BESSUEILLE Laurence1

Affiliation:

1. Laboratoire ‘Organisation et Dynamique des Membranes Biologiques’, UMR CNRS 5013, Université Claude Bernard – Lyon I, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

Abstract

APP (amyloid precursor protein), together with Chol (cholesterol) and ApoE (apolipoprotein E), has been linked to Alzheimer's disease. We have examined the hypothesis that interaction of APP with the lipid membranes is modulated by Chol and ApoE. Insertion of APP into lipid monolayers was first evidenced as an increase in the surface pressure. APP injected into a subphase induced a substantial increase in the surface pressure of monolayers prepared from PC (L-α-phosphatidylcholine), Chol, SPM (sphingomyelin) and PS (L-α-phosphatidylserine), the major lipids present in the plasma membranes of brain cells. At a given initial pressure, the insertion of APP into expanded monolayers is higher than that in condensed monolayers, in the order Chol>PC>SPM>PS. The membrane insertion capacity of APP was also measured from surface pressure versus area (π–A) isotherms of APP–lipid monolayers. The increase in the mean area per molecule in protein–lipid monolayers, in the order PC>Chol>PS>SPM, provides further evidence for protein–lipid interactions. These interactions occurred at optimum salt levels and optimum pH values close to physiological conditions (150 mM NaCl and pH 7.4). In addition, ApoE4 affected the insertion of APP into lipid films. APP–ApoE complexes showed a decreased ability to penetrate lipid monolayers at a constant area. APP–ApoE complexes expanded the π–A isotherm of a Chol monolayer to a lesser extent than APP alone. These experiments demonstrate the roles of Chol and ApoE in the modulation of membrane insertion of APP.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3