Affiliation:
1. Department of Biochemistry, Faculty of Science, Australian National University, Canberra, A.C.T. 2601, Australia.
Abstract
Co-administration of glucagon and vasopressin to rat liver perfused with buffer containing 1.3 mM-Ca2+ induces a 4-fold increase in Pi in the subsequently isolated mitochondria (from approx. 9 to approx. 40 nmol/mg of mitochondrial protein). This increase is not attributable to PPi hydrolysis, and is not observed if the perfusate Ca2+ is lowered from 1.3 mM to 50 microM. The increase in mitochondrial Pi closely parallels that of mitochondrial Ca2+; when the increase in Pi and Ca2+ accumulation is maximal, the molar ratio is close to that in Ca3(PO4)2. Measurement of changes in the perfusate Pi revealed that, whereas administration of glucagon or vasopressin alone brought about a rapid decline in perfusate Pi, the largest decrease (reflecting net retention of Pi by the liver) was observed when the hormone was co-administered in the presence of 1.3 mM-Ca2+. The synergistic action of glucagon plus vasopressin was nullified by lowering the perfusate Ca2+ to 50 microM. The data provide evidence that, whereas glucagon may be able to alter Pi fluxes directly in intact liver, any alterations induced by vasopressin are indirect and result only from its action of mobilizing Ca2+.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献