The nature of mitochondrial respiration and discrimination between membrane and pump properties

Author:

Canton M1,Luvisetto S1,Schmehl I1,Azzone G F1

Affiliation:

1. C.N.R. Unit for the Study of Physiology of Mitochondria, and Department of Experimental Biomedical Sciences, University of Padova, via Trieste 75, 35121-Padova, Italy

Abstract

A new criterion is utilized for the interpretation of flow-force relationships in rat liver mitochondria. The criterion is based on the view that the nature of the relationship between the H+/O ratio and the membrane potential can be inferred from the relationship between ohmic-uncoupler-induced extra respiration and the membrane potential. Thus a linear relationship between extra respiration and membrane potential indicates unequivocally the independence of the H+/O ratio from the membrane potential and the leak nature of the resting respiration [Brand, Chien, and Diolez (1994) Biochem. J. 297, 27-29]. On the other hand, a non-linear relationship indicates that the H+/O ratio is dependent on the membrane potential. The experimental assessment of this relationship in the presence of an additional ohmic leak, however, is rendered difficult by both the uncoupler-induced depression of membrane potential and the limited range of dependence of the H+/O ratio on the membrane potential. We have selected conditions, i.e. incubation of mitochondria at low temperatures, where the extent of non-linearity is markedly increased. It appears that the nature of the resting respiration of mitochondria in vitro is markedly dependent on the temperature: at low temperatures the percentage of resting respiration due to membrane leak decreases and that due to intrinsic uncoupling of the proton pumps increases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3