Modulation of poly(ADP-ribose) polymerase during neutrophilic and monocytic differentiation of promyelocytic (NB4) and myelocytic (HL-60) leukaemia cells

Author:

Bhatia M1,Kirkland J B1,Meckling-Gill K A1

Affiliation:

1. Department of Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada Ni G 2W1

Abstract

Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which has been shown to play a role in the differentiation of haematopoietic cells. We report here that neutrophils are the first nucleated mammalian cell type demonstrated to be devoid of immunoreactive PARP. Both NB4 acute promyelocytic leukaemia and HL-60 (acute myelocytic leukaemia) cells were differentiated into non-malignant neutrophils with all-trans-retinoic acid (ATRA). Western blot analysis demonstrated that ATRA had no effect on PARP expression in HL-60 cells. However, PARP was completely down-regulated in NB4 cells within 36 h of treatment initiation. This decrease in PARP polypeptide coincided with growth arrest and preceded the appearance of neutrophilic differentiation features. NB4 cells require a combination of 1,25-dihydroxyvitamin D3 (1,25-D3) and phorbol 12-myristate 13-acetate (PMA) to differentiate completely into monocyte/macrophages, whereas HL-60 cells can be made to differentiate by combined or single agents. PARP expression was up-regulated 90-fold when NB4 cells were treated with PMA and 1,25-D3 together, and this increase accompanied expression of the monocyte/macrophage phenotype. Only modest changes in PARP expression were observed when each agent was used alone in NB4 cells or when HL-60 cells were differentiated along the monocyte/macrophage pathway. In addition, PARP activity was modulated in a pattern similar to protein levels when NB4 cells were induced to differentiate along the neutrophilic and monocyte/macrophage pathways. This suggests that the activity of PARP may be controlled through regulation of protein levels during NB4 cell differentiation. We conclude that PARP levels are dramatically modulated during monocyte/macrophage and neutrophilic differentiation. On the basis of the tremendous changes in PARP polypeptide and total activity during myeloid differentiation, we propose that modulation of PARP gene expression is required for cellular maturation in both lineages.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3