Author:
Beatrice M C,Pfeiffer D R
Abstract
The mechanism by which palmitoyl-CoA inhibits Ca2+ uptake in liver and heart mitochondria was examined. At a given concentration of palmitoyl-CoA, the extent of inhibition is inversely related to the concentration of the respiratory substrate succinate. Palmitoyl-CoA inhibition of uncoupler-stimulated respiration and respiration stimulated by ionophore-A23187-induced Ca2+ cycling is also relieved by high succinate concentrations. These effects of palmitoyl-CoA and succinate concentration are distinct from the increase in inner-membrane permeability, which can be produced by palmitoyl-CoA and Ca2+ [Beatrice, Palmer & Pfeiffer (1980) J. Biol. Chem. 255, 8663-8671]. The apparent K0.5 of the mitochondrial Ca2+ pump is not altered by palmitoyl-CoA. No or negligible effects of palmitoyl-CoA on the Ca2+-uptake rate are observed when ascorbate replaces succinate as an energy source. These findings, together with the known activity of palmitoyl-CoA as a competitive inhibitor of the dicarboxylate carrier [Morel, Lauquin, Lunardi, Duszynski & Vignais (1974) FEBS Lett. 39, 133-138], indicate that palmitoyl-CoA inhibits energy-linked Ca2+ transport by limiting the rate of electron transport through limitation of succinate entry into the mitochondria rather than by directly inhibiting the Ca2+ carrier.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献