Chloride Depletion and Hypochloraemia as a Cause of Renal Sodium and Water Loss in the Rat

Author:

Khanh B. T.1,Luke R. G.1

Affiliation:

1. Renal Division, Department of Medicine, University of Kentucky Medical Center, Lexington, Kentucky, U.S.A.

Abstract

1. To study the effects of chloride depletion, without sodium depletion or change in plasma tonicity, on renal excretion of sodium and water, a single exchange peritoneal dialysis was performed in rats against a solution of glucose (15 g/l) containing either NaCl (150 mmol/l, control) or NaHCO3 (150 mmol/l, experimental); KHCO3 (4 mmol/l) was added to both solutions. All rats were prepared before dialysis by a low NaCl diet for 10 days. 2. Peritoneal dialysis against NaHCO3 consistently produced a negative sodium and water balance compared with dialysis against NaCl. Despite this, subsequent electrolyte balance for 3 days showed that chloride-depleted rats excreted significantly more sodium and water and had a reduced urinary osmolality as compared with control animals. Increased sodium and water loss were unexplained by osmotic or bicarbonate diuresis. Kaliuresis was seen in the chloride-depleted rats but muscle potassium was not significantly depressed. 3. With sodium and water loss and continued renal chloride conservation, plasma chloride rose on the average from 88 mmol/l after dialysis against NaHCO3 to 100 mmol/l (control 104 mmol/l) at 72 h. Concomitant with this increase in plasma [Cl−], on the third day after dialysis, during hydropenia, urinary osmolality and papillary [Na+] were not different from control concentrations. 4. It is postulated that chloride depletion and/or hypochloraemia leads to diminished chloride transport in the loop of Henle and that this causes reduced sodium transport into the medulla, impaired concentrating ability and inappropriate urinary sodium loss.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3