Highly conserved residue arginine-15 is required for the Ca2+-dependent properties of the γ-carboxyglutamic acid domain of human anticoagulation Protein C and activated Protein C

Author:

THARIATH Abraham1,CASTELLINO Francis J.1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A.

Abstract

The function of the rigidly conserved amino acid residue R15 in the Ca2+/phospholipid-dependent properties of the γ-carboxyglutamic acid (Gla)-containing domain (GD) of human Protein C (PC) were investigated through site-directed mutagenesis strategies. A series of recombinant (r) mutants, namely r-[R15K]PC, r-[R15H]PC, r-[R15L]PC, and r-[R15W]PC, were constructed, expressed and purified, and their relevant properties investigated. As revealed by intrinsic fluorescence analysis, all of the variant proteins underwent Ca2+-dependent structural transitions. Nonetheless, they displayed altered binding properties to acidic phospholipid vesicles, and also did not interact with a monoclonal antibody specific for the type of Ca2+-dependent conformation of the GD that characterizes the wild-type protein. On conversion into their activated forms, these variant enzymes possessed less than 10% of the ex vivo plasma anticoagulant activity of wild-type r-PC. Similar activities were found when the r-active PC mutants were assayed directly for inactivation of factor Va and factor VIII, in the complete prothrombinase and tenase complexes respectively. We conclude that R15 is a critical residue in allowing the GD of PC, and probably of other proteins of this class, to adopt a Ca2+-dependent conformation that allows functional phospholipid binding, thus explaining the strict conservation of this amino acid residue in GD modules of various proteins. As a result of an analysis of structural models of the Ca2+ŐGD complex of PC, it is postulated that hydrogen bonds between the side chain of R15 and the functionally important Gla16 residue, as well as between the side chain of R15 and the carbonyl oxygen in the peptide bond of H10, are critical for adoption of a Ca2+-dependent conformation of the GD that allows functional phospholipid binding.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3