Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy

Author:

Blagbrough I.S.1,Geall A.J.1,Neal A.P.1

Affiliation:

1. Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K.

Abstract

As a part of our continuing studies on ‘Polyamines and their role in human disease’ we are investigating how polyamines, and especially how novel polyamine conjugates, interact with DNA. We are studying how these conjugates interact with circular plasmids in order to produce nanometre-sized particles suitable for transfecting cells. Our considerations of structure--activity relationships (SAR) within naturally occurring and synthetic polyamines have shown the significance of the inter-atomic distances between the basic nitrogen atoms. As these atoms are typically fully protonated under physiological conditions, they exist in equilibrium as polyammonium ions. The covalent addition of a lipid moiety, typically one or two alkyl or alkenyl chains, or a steroid, allows much greater efficiency in DNA condensation and in the cellular transfection achieved. Thus efficient DNA condensation and subsequently drug delivery (i.e. with DNA as the drug) can be brought about using novel polyamine conjugates. Taking further advantage of the functionalization of specific steroids (e.g. cholesterol and certain bile acids), we have designed and prepared novel fluorescent molecular probes as tools to throw light on the problematic steps in non-viral gene delivery which still impede efficient gene therapy. Thus, the current aims of our research are to understand, design and prepare small-molecule lipopolyamines for non-viral gene therapy (NVGT). The rational design and practical preparation of non-symmetrical polyamine carbamates and amides, based on steroid templates of cholesterol and the bile acid lithocholic acid as the lipid moiety, provides fluorescent molecular probes that condense DNA. These novel lipopolyamine conjugates mimic the positive charge distribution found in the triamine spermidine and the tetra-amine spermine alkaloids. After optimizing their SAR, these fluorescent probes will be useful in monitoring gene delivery in NVGT.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3