Characterization of human torsinA and its dystonia-associated mutant form

Author:

LIU Zhonghua1,ZOLKIEWSKA Anna1,ZOLKIEWSKI Michal1

Affiliation:

1. Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan, KS 66506, U.S.A.

Abstract

Deletion of a single glutamate in torsinA correlates with early-onset dystonia, the most severe form of a neurological disorder characterized by uncontrollable muscle contractions. TorsinA is targeted to the ER (endoplasmic reticulum) in eukaryotic cells. We investigated the processing and membrane association of torsinA and the dystonia-associated Glu-deletion mutant (torsinAΔE). We found that the signal sequence of torsinA (residues 1–20 from the 40 amino-acid long N-terminal hydrophobic region) is cleaved in Drosophila S2 cells, as shown by the N-terminal sequencing after partial protein purification. TorsinA is not secreted from S2 cells. Consistently, sodium carbonate extraction and Triton X-114 treatment showed that torsinA is associated with the ER membrane in CHO (Chinese-hamster ovary) cells. In contrast, a variant of torsinA that contains the native signal sequence without the hydrophobic region Ile24–Pro40 does not associate with the membranes in CHO cells, and a truncated torsinA without the 40 N-terminal amino acids is secreted in the S2 culture. Thus the 20-amino-acid-long hydrophobic segment in torsinA, which remains at the N-terminus after signal-peptide cleavage, is responsible for the membrane anchoring of torsinA. TorsinAΔE showed similar cleavage of the 20 N-terminal amino acids and membrane association properties similar to wild-type torsinA but, unlike the wild-type, torsinAΔE was not secreted in the S2 culture even after deletion of the membrane-anchoring segment. This indicates that the dystonia-associated mutation produces a structurally distinct, possibly misfolded, form of torsinA, which cannot be properly processed in the secretory pathway of eukaryotic cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3