Characterization of N-ethylmaleimide-sensitive thiol groups required for the GTP-dependent fusion of endoplasmic reticulum membranes

Author:

Sokoloff A V1,Whalley T1,Zimmerberg J1

Affiliation:

1. Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 6C215, Bethesda, MD 20892, U.S.A.

Abstract

The GTP-dependent fusion activity of endoplasmic reticulum membranes is thought to be required for the structural maintenance and post-mitotic regeneration of the endoplasmic reticulum. This fusion is sensitive to the thiol-alkylating agent N-ethylmaleimide. In many intracellular fusion events N-ethylmaleimide-sensitivity is associated with a homotrimeric ATPase called N-ethylmaleimide-sensitive fusion protein or NSF. The addition of cytosol containing NSF is known to restore fusion activity to N-ethylmaleimide-treated membranes. We found that the inhibition of fusion of rat liver endoplasmic reticulum membranes (microsomes) by N-ethylmaleimide was not reversed by the addition of untreated cytosol. Fusion was also unaffected by treatment with a buffer known to remove NSF from membranes. Accordingly, no membrane-associated NSF was detected by immunoblot analysis. These data suggest that microsome fusion requires an N-ethylmaleimide-sensitive component distinct from NSF. This component was tightly associated with the membranes, so we used a number of chemical probes to characterize it in situ. Its thiol groups did not appear to be part of a GTP-binding site. They showed relatively low reactivity with sodium periodate, which induces the formation of disulphide bonds between proximate thiol groups. The thiols were not protected against N-ethylmaleimide by Zn2+, a potent inhibitor of fusion which is known to efficiently co-ordinate thiol groups. To characterize the topology of the fusion-related thiol groups we used bulky thiol-specific reagents prepared by conjugating BSA or 10 kDa aminodextran to the bifunctional reagent N-succinimidyl 3-(2-pyridyldithio)propionate. The inhibition of fusion by these reagents indicated that these thiols are highly exposed on the membranes. This exposure might be important for the function of these groups during GTP-triggered fusion.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3