Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase

Author:

Shibib B A1,Khan L A1,Rahman R1

Affiliation:

1. Department of Biochemistry, University of Dhaka, Dhaka-1000, Bangladesh

Abstract

Coccinia indica leaves were extracted with 60% ethanol, solvents were evaporated and the residue was suspended in water. This suspension was administered orally at a dose of 200 mg/kg body wt. after 18 h of fasting to normal fed and streptozotocin-induced male diabetic rats (180-250 g). After 90 min the rats were killed, and blood-glucose, hepatic glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase (G6PDH) and red-cell G6PDH were assayed. Blood sugar was depressed by 23% (P < 0.01) and 27% (P < 0.001) in the normal fed and streptozotocin-diabetic rats respectively compared with controls which were given distilled water. Hepatic glucose-6-phosphatase and fructose-1,6-bisphosphatase activities were depressed by 32% (P < 0.001) 30% (P < 0.05) respectively in the streptozotocin-diabetic rats, compared with 19% (P < 0.02) and 20% (P < 0.01) depression in the normal fed controls, whereas both the red-cell and hepatic G6PDH activities were found to be elevated by feeding the extract in the streptozotocin-diabetic and in the normal fed controls. Similar results were obtained with the 95%-ethanolic extract of Momordica charantia. Taken together, these results indicate that Coccinia indica and Momordica charantia extracts lowered blood glucose by depressing its synthesis, on the one hand through depression of the key gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and on the other by enhancing glucose oxidation by the shunt pathway through activation of its principal enzyme G6PDH.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3