Mouse system-N amino acid transporter, mNAT3, expressed in hepatocytes and regulated by insulin-activated and phosphoinositide 3-kinase-dependent signalling

Author:

GU Sumin1,LANGLAIS Paul1,LIU Feng12,JIANG Jean X.1

Affiliation:

1. Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, U.S.A.

2. Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, U.S.A.

Abstract

Amino acid transporters are essential for normal cell function and physiology. In the present study, we report the identification and functional and regulatory characterization of a mouse system-N amino acid transporter, mNAT3. Expression of mNAT3 in Xenopus oocytes revealed that the strongest transport activities were preferred for l-alanine. In addition, mNAT3 is an Na+- and pH-dependent low-affinity transporter and it partially tolerates substitution of Na+ by Li+. mNAT3 has been found to be expressed predominantly in the liver, where it is localized to the plasma membrane of hepatocytes, with the strongest expression in those cells adjacent to the central vein, decreasing gradually towards the portal tract. Treatment of mouse hepatocyte-like H2.35 cells with insulin led to a significant increase in the expression of mNAT3, and this stimulation was associated closely with an increase in the uptake of l-alanine. Interestingly, this insulin-induced stimulatory effect on mNAT3 expression was attenuated by the phosphoinositide 3-kinase inhibitor LY294002, but not by the mitogen-activated protein kinase inhibitor PD98059, although both kinases were fully activated by insulin. The results suggest that insulin-mediated regulation of mNAT3 is likely to be mediated through a phosphoinositide 3-kinase-dependent signalling pathway. The unique expression pattern and insulin-mediated regulatory properties of mNAT3 suggest that this transporter may play an important role in liver physiology.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3