Time-course changes in content and fatty acid composition of phosphatidic acid from rat thymocytes during concanavalin A stimulation

Author:

el Bawab S1,Macovschi O1,Lagarde M1,Prigent A F1

Affiliation:

1. INSERM Unité 352, Laboratoire de Chimie Biologique INSA-Lyon 20, Avenue Albert Einstein 69621 Villeurbanne, France

Abstract

Several studies have shown the potential role of phosphatidic acid (PA) as a second messenger in different cell types. Thus, PA has been shown to mimic physiological agonists leading to various cellular responses, such as neurotransmitter and hormone release, cell proliferation by modulating DNA or RNA synthesis, the expression of several proto-oncogenes and growth factors, and the stimulation of enzyme activities such as phospholipase C (PLC), protein kinases and cyclic AMP (cAMP) phosphodiesterase. Stimulation of [3H]arachidonate-labelled rat thymocytes with the mitogen lectin concanavalin A (con A) resulted in enhanced production of radiolabelled PA after only 5 min of activation. The radiolabelled PA increase corresponded to a real increase in PA mass as determined by GLC quantification of its fatty acid content. In the presence of ethanol (0.5%), formation of phosphatidylethanol was not observed after 5 min of con A activation. Pretreatment of cells with R 59022 (10 microM), a diacylglycerol (DAG) kinase inhibitor, showed an inhibition in the formation of radiolabelled PA and in PA mass. These results suggest that the PLC-DAG kinase may be the pathway for PA synthesis in the first minutes of mitogenic thymocyte activation. A detailed analysis of the fatty acid composition showed that the relative amount of unsaturated fatty acids was increased in PA from stimulated cells concomitantly with a decrease in saturated ones; in particular, arachidonic acid was increased approximately 2-fold only 2 min after con A addition whereas palmitic acid was decreased for the whole period investigated (20 min). These changes favour the hydolysis of phosphoinositides rather than phosphatidylcholines by PLC. As PA remains a minor phospholipid, these changes are unlikely to affect cell membrane fluidity; but PA being now well recognized as a potential second messenger, its increased content as well as its increased unsaturation in the fatty acyl moiety might modulate several signalling pathways or the activity of enzymes such as cyclic nucleotide phosphodiesterase, controlling in this way the cellular level of cAMP, a negative regulator of blastic transformation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3