Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors. Relation to efficacy of agonists for stimulation of phosphoinositide breakdown and Ca2+ mobilization

Author:

Evans T,Hepler J R,Masters S B,Brown J H,Harden T K

Abstract

The efficacies of a series of six muscarinic cholinergic receptor agonists for stimulation of phosphoinositide breakdown and unidirectional efflux of 45Ca2+ in 1321N1 human astrocytoma cells were compared with the relative capacity of these agonists for formation of a GTP-sensitive high-affinity binding state in washed membranes. Carbachol and methacholine were ‘full’ agonists as regards phosphoinositide breakdown and Ca2+ mobilization, whereas bethanechol, arecoline and oxotremorine were ‘partial’ agonists for these two responses. Pilocarpine was the least efficacious of the six drugs tested. Except for pilocarpine, competition curves generated with the agonists and [3H]quinuclidinyl benzilate did not follow the Law of Mass Action for ligand interaction at a single site. Non-linear regression analyses of these data indicated that the data significantly better fit a two-, rather than a single-, site model with a high- and a low-affinity binding component. Competition curves generated in the presence of GTP were shifted to the right, and the extent of receptors in the high-affinity agonist-binding state was decreased. The relative efficacies of the six agonists for stimulation of phosphoinositide breakdown and Ca2+ mobilization were significantly correlated with the difference in affinities (KL/KH) between the two affinity states for each agonist. The relative efficacy of the agonists for stimulation of Ca2+ mobilization also was significantly correlated with the extent of receptors in the high-affinity state (%H) for each agonist. The results suggest that interaction with an as-yet unidentified guanine nucleotide regulatory protein is important in the mechanism whereby muscarinic receptors stimulate phosphoinositide breakdown in 1321N1 astrocytoma cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3