Histone marks: repairing DNA breaks within the context of chromatin

Author:

Miller Kyle M.1,Jackson Stephen P.1

Affiliation:

1. The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K., and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K.

Abstract

Inherited or acquired defects in detecting, signalling or repairing DNA damage are associated with various human pathologies, including immunodeficiencies, neurodegenerative diseases and various forms of cancer. Nuclear DNA is packaged into chromatin and therefore the true in vivo substrate of damaged DNA occurs within the context of chromatin. Our work aims to decipher the mechanisms by which cells detect DNA damage and signal its presence to the DNA-repair and cell-cycle machineries. In particular, much of our work has focused on DNA DSBs (double-strand breaks) that are generated by ionizing radiation and radiomimetic chemicals, and which can also arise when the DNA replication apparatus encounters other DNA lesions. In the present review, we describe some of our recent work, as well as the work of other laboratories, that has identified new chromatin proteins that mediate DSB responses, control SDB processing or modulate chromatin structure at DNA-damage sites. We also aim to survey several recent advances in the field that have contributed to our understanding of how particular histone modifications and involved in DNA repair. It is our hope that by understanding the role of chromatin and its modifications in promoting DNA repair and genome stability, this knowledge will provide opportunities for developing novel classes of drugs to treat human diseases, including cancer.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3