Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association

Author:

YIP-SCHNEIDER Michele T.1,MIAO Wenyan2,LIN Amy3,BARNARD Darlene S.4,TZIVION Guri5,MARSHALL Mark S.4

Affiliation:

1. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.

2. Millennium Pharmaceuticals Inc., Cambridge, MA 02142, U.S.A.

3. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.

4. Eli Lilly and Company, Lilly Corporate Center, Drop Code 1543, Indianapolis, IN 46285, U.S.A.

5. Diabetes Research Laboratory, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, U.S.A.

Abstract

The Raf-1 kinase domain is kept in an inactive state by the N-terminal regulatory domain. Activation of the kinase domain occurs following release from the N-terminal repression and possible catalytic upregulation. To distinguish the regulatory mechanisms that directly influence the catalytic activity of the enzyme from those which act through the inhibitory domain, the catalytic domain of Raf-1 (CR3) was expressed in COS-7 cells. The role of phosphorylation in the direct regulation of this domain was determined by substituting non-phosphorylatable amino acids for known serine and tyrosine phosphorylation sites. The intrinsic activity of each mutant protein was determined as well as stimulation by v-Src and phorbol esters. Both v-Src and phorbol esters were potent activators of CR3, requiring the serine 338/339 (p21-activated protein kinase, Pak) and tyrosine 340/341 (Src) phosphorylation sites for full stimulation of CR3. In contrast, loss of the serine 497/499 protein kinase C phosphorylation sites had little effect on CR3 activation by either v-Src or phorbol esters. Loss of serine 621, a 14-3-3 adaptor-protein-binding site, prevented activation of CR3 by v-Src or phorbol esters and partially decreased the high basal activity of the kinase fragment. When co-expressed in COS-7 cells, 14-3-3 associated strongly with full-length Raf-1, weakly with wild-type CR3 and not at all with the A621 and D621 CR3 mutants. The role of 14-3-3 in maintaining the activity of the catalytic domain of Raf-1 was investigated further by performing peptide-competition studies with wild-type CR3, wild-type CR3 and v-Src or constitutively active CR3 (CR3[YY340/341DD]). In each case, incubation of the proteins with a phosphoserine-621 Raf-1 peptide, which we show displaced Raf-1 and CR3[YY340/341DD] from 14-3-3, was found to substantially reduce catalytic activity. Taken together, our results support a model of Raf regulation in which the activity of the Raf-1 catalytic domain is directly upregulated by phosphorylation, following relief of inhibition by the N-terminal regulatory domain upon Ras-GTP binding. Moreover, the presence of serine 621 in the free catalytic fragment is required for full CR3 activation by stimulatory factors, and the continuous presence of 14-3-3 at this site is necessary for retaining activity once the kinase is activated.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3