Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic β-cells

Author:

An R.12,da Silva Xavier G.12,Hao H.-X.3,Semplici F.12,Rutter J.3,Rutter G.A.12

Affiliation:

1. Henry Wellcome Signalling Laboratories and Department of Biochemistry, University of Bristol, Bristol BS8 ITD, U.K.

2. Department of Cell Biology, Division of Medicine, Faculty of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, U.K.

3. Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, U.S.A.

Abstract

The transcription factor PDX-1 (pancreatic duodenal homeobox-1) is required for normal pancreatic development and for the function of insulin-producing islet β-cells in mammals. We have shown previously that glucose regulates insulin gene expression in part through the activation and translocation of PDX-1 from the nuclear periphery to the nucleoplasm. We have also found that PASK [PAS (Per-Arnt-Sim) kinase], a member of the nutrient-regulated family of protein kinases, is activated in response to glucose challenge in β-cells and is involved in the regulation of expression of PDX-1. Purified PASK efficiently phosphorylated recombinant PDX-1 in vitro on a single site (Thr-152). To determine the impact of phosphorylation at this site, we generated wild-type and mutant (T152A, T152D and T152E) forms of PDX-1 and examined the distribution of each of these in clonal MIN6 β-cells by immunocytochemical analysis. Unexpectedly, only the T152D mutation significantly affected subcellular distribution, increasing the ratio of nuclear/cytosolic labelling at low and high glucose concentrations, suggesting that phosphorylation at Thr-152 inhibits nuclear uptake in response to glucose. Based on these results, experiments to examine the contribution of Thr-152 to the overall phosphorylation of PDX-1 in intact cells will be undertaken.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3