Kinetic and physicochemical characteristics of an endogenous inhibitor to progesterone–receptor binding in rat placental cytosol

Author:

Ogle T F

Abstract

This study describes the kinetic behaviour and physicochemical aspects of an endogenous inhibitor of progesterone--receptor binding in trophoblast cytosol from day-12 embryos. The progesterone cytosol receptor was partially purified and isolated from the inhibitor as the 0--50%-satd. (NH4)2SO4 fraction. The inhibitory substance was shown to reside in the 50--70%-satd. (NH4)2SO4 fraction. Equilibration of the inhibitor preparation with the receptor fraction increased the Kapp.D of the ligand--receptor binding reaction in a concentration-dependent manner (26 +/- 3-fold increase in Kapp.D per mg of protein of the (NH4)2SO4 fraction, n = 16). However, the inhibitor did not alter the concentration of binding sites. Studies of other physicochemical aspects of the inhibitor showed it to be non-diffusible, excluded from Sephadex G-25, stable at 35 degrees C for 30 min, but irreversibly denatured at 70 degrees C for 30 min. The Stokes′ radius was estimated by gel chromatography to be 2.8 +/- 0.11 nm (n = 5). Inhibitory activity was destroyed by HgCl2, suggesting that disulphide bridges play an essential role in the biological activity of this molecule. The inhibitor is a macromolecule which does not bind progesterone and differs from albumin. The kinetic mechanism by which the inhibitor enhanced Kapp.D was investigated by measuring association and dissociation rate constants and the energy of activation (Ea) for each reaction. The association rate (k+1) for progesterone and receptor was (1.3 +/- 0.2) x 10(4) M-1 . s-1 but declined to (0.4 +/- 0.1) x 10(4) M-1 . s-1 (n = 5) when exposed to the inhibitor (P less than 0.01). The dissociation rate (k-1) was (3.2 +/- 0.6) x 10(-5) s-1 for progesterone--receptor complex and was unchanged by the inhibitor. The Ea for the association of complex was 33.6 +/- 4.2 kJ/mol and was increased to 63.0 +/- 8.4 kJ/mol by the inhibitor (P less than 0.05). The Ea of dissociation was unaltered. Thus, an inhibitor is present in trophoblast cytosol which specifically enhances Kapp.D without altering availability of binding sites. The mode of action of inhibitor is to increase the energy of activation for association of complex without influencing the dissociation reaction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3