Functional studies in 3T3L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation

Author:

MACAULAY S. Lance1,HEWISH Dean R.1,GOUGH Keith H.1,STOICHEVSKA Violet1,MACPHERSON Susan F.1,JAGADISH Mittur1,WARD Colin W.1

Affiliation:

1. CSIRO, Division of Biomolecular Engineering, 343 Royal Parade, Parkville 3052, Victoria, Australia

Abstract

Insulin stimulation of glucose transport in the major insulin-responsive tissues results predominantly from the translocation to the cell surface of a particular glucose transporter isoform, GLUT4, residing normally under basal conditions in intracellular vesicular structures. Recent studies have identified the presence of vesicle-associated membrane protein (VAMP) 2, a protein involved in vesicular trafficking in secretory cell types, in the vesicles of insulin-sensitive cells that contain GLUT4. The plasma membranes of insulin-responsive cells have also been shown to contain syntaxin 4 and the 25 kDa synaptosome-associated protein (SNAP-25), two proteins that form a complex with VAMP 2. The potential functional involvement of VAMP 2, SNAP-25 and syntaxin 4 in the trafficking of GLUT4 was assessed in the present study by determining the effect on GLUT4 translocation of microinjection of toxins that specifically cleave VAMPs or SNAP-25, or microinjection of specific peptides from VAMP 2 and syntaxin 4. Microinjection of tetanus toxin light chain or botulinum D toxin light chain resulted in an 80 and 61% inhibition respectively of insulin stimulation of GLUT4 translocation in 3T3L1 cells assessed using the plasma-membrane lawn assay. Botulinum A toxin light chain, which cleaves SNAP-25, was without effect. Microinjection of an N-terminal VAMP 2 peptide (residues 1–26) inhibited insulin stimulation of GLUT4 translocation by 54%. A syntaxin 4 peptide (residues 106–122) inhibited insulin stimulation of GLUT4 translocation by 40% whereas a syntaxin 1c peptide (residues 226–260) was without effect. These data taken together strongly suggest a role for VAMP 2 in GLUT4 trafficking and also for syntaxin 4. They further indicate that the isoforms of SNAP-25 isolated to date that are sensitive to cleavage by botulinum A toxin light chain do not appear to be involved in GLUT4 translocation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3