Ca2+-dependent regulation of vascular smooth-muscle caldesmon by S.100 and related smooth-muscle proteins

Author:

Pritchard K1,Marston S B1

Affiliation:

1. Cardiac Medicine Department, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, U.K.

Abstract

1. We have investigated the ability of bovine brain S.100, and of three related proteins from sheep aorta smooth muscle, to confer Ca(2+)-sensitivity on thin filaments reconstituted from smooth-muscle actin, tropomyosin and caldesmon. 2. At 37 degrees C in pH 7.0 buffer containing 120 mM-KCl, approximately stoichiometric amounts of S.100 reversed caldesmon's inhibition of the activation of myosin MgATPase by smooth-muscle actin-tropomyosin. The [S.100] which reversed by 50% the inhibition by caldesmon (the E.C.50) was 2.5 microM when [caldesmon] = 2-3 microM in the assay mixture. When [KCl] was decreased to 70 mM, E.C.50 = 11.5 microM; at 25 degrees C in 70 mM-KCl, up to 20 microM-S.100 had no effect. When skeletal-muscle actin rather than smooth-muscle actin was used to reconstitute thin filaments, 20 microM-S.100 did reverse inhibition by caldesmon, at 25 degrees C in buffer containing 70 mM-KCl. This dependence on conditions is also characteristic of the calmodulin-caldesmon interaction. 3. These results suggested that S.100 or a related protein might interact with caldesmon in smooth muscle. We therefore attempted to prepare such a protein from sheep aorta. Three proteins were purified: an Mr-17,000 protein (yield 16 mg/kg), an abundant Mr-11,000 protein (yield 48 mg/kg), and an Mr-9000 protein (yield 4 mg/kg). Neither of the last two low-Mr proteins had any effect on activation of myosin MgATPase by reconstituted thin filaments. The protein of Mr 17,000 had Ca(2+)-sensitizing activity, and behaved exactly like brain calmodulin in the assay system.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3