Affiliation:
1. Cardiac Medicine Department, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, U.K.
Abstract
1. We have investigated the ability of bovine brain S.100, and of three related proteins from sheep aorta smooth muscle, to confer Ca(2+)-sensitivity on thin filaments reconstituted from smooth-muscle actin, tropomyosin and caldesmon. 2. At 37 degrees C in pH 7.0 buffer containing 120 mM-KCl, approximately stoichiometric amounts of S.100 reversed caldesmon's inhibition of the activation of myosin MgATPase by smooth-muscle actin-tropomyosin. The [S.100] which reversed by 50% the inhibition by caldesmon (the E.C.50) was 2.5 microM when [caldesmon] = 2-3 microM in the assay mixture. When [KCl] was decreased to 70 mM, E.C.50 = 11.5 microM; at 25 degrees C in 70 mM-KCl, up to 20 microM-S.100 had no effect. When skeletal-muscle actin rather than smooth-muscle actin was used to reconstitute thin filaments, 20 microM-S.100 did reverse inhibition by caldesmon, at 25 degrees C in buffer containing 70 mM-KCl. This dependence on conditions is also characteristic of the calmodulin-caldesmon interaction. 3. These results suggested that S.100 or a related protein might interact with caldesmon in smooth muscle. We therefore attempted to prepare such a protein from sheep aorta. Three proteins were purified: an Mr-17,000 protein (yield 16 mg/kg), an abundant Mr-11,000 protein (yield 48 mg/kg), and an Mr-9000 protein (yield 4 mg/kg). Neither of the last two low-Mr proteins had any effect on activation of myosin MgATPase by reconstituted thin filaments. The protein of Mr 17,000 had Ca(2+)-sensitizing activity, and behaved exactly like brain calmodulin in the assay system.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献