Lipid phosphate phosphatase-1 regulates lysophosphatidic acid- and platelet-derived-growth-factor-induced cell migration

Author:

Long Jaclyn S.1,Yokoyama Kazuaki2,Tigyi Gabor2,Pyne Nigel J.1,Pyne Susan1

Affiliation:

1. Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K.

2. Department of Physiology, University of Tennessee Health Science Center Memphis, 894 Union Avenue, Memphis, TN, U.S.A.

Abstract

LPPs (lipid phosphate phosphatases) are members of a family of enzymes that catalyse the dephosphorylation of lipid phosphates. The only known form of regulation of this family of enzymes is via de novo expression of LPP isoforms in response to growth factors. In this respect, we evaluated the effect of moderate increases in the expression of recombinant LPP1 on signal transduction by both G-protein-coupled receptors and receptor tyrosine kinases. We present evidence for a novel role of LPP1 in reducing PDGF (platelet-derived growth factor)- and lysophosphatidic acid-induced migration of embryonic fibroblasts. We demonstrate that the overexpression of LPP1 inhibits cell migration by reducing the PDGF-induced activation of p42/p44 MAPK (mitogen-activated protein kinase). This appears to occur via a mechanism that involves the LPP1-induced down-regulation of typical PKC (protein kinase C) isoform(s), which are normally required for PDGF-induced activation of p42/p44 MAPK and migration. In this regard, DAG (diacylglycerol) levels are high and sustained in cells overexpressing LPP1, suggesting a dynamic interconversion of phosphatidic acid into DAG by LPP1. This may account for the effects of LPP1 on cell migration, as sustained DAG is known to down-regulate PKC isoforms in cells. Therefore the physiological changes in the expression levels of LPP1 might represent a heterologous desensitization mechanism for attenuating PKC-mediated signalling and regulation of cell migration.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3