Transport of a neurotoxicant by molecular mimicry: the methylmercury–l-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2

Author:

SIMMONS-WILLIS Tracey A.1,KOH Albert S.1,CLARKSON Thomas W.1,BALLATORI Nazzareno1

Affiliation:

1. Department of Environmental Medicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Box EHSC, Rochester, NY 14642, U.S.A.

Abstract

Methylmercury (MeHg) readily crosses cell membrane barriers to reach its target tissue, the brain. Although it is generally assumed that this rapid transport is due to simple diffusion, recent studies have demonstrated that MeHg is transported as a hydrophilic complex, and possibly as an l-cysteine complex on the ubiquitous L-type large neutral amino acid transporters (LATs). To test this hypothesis, studies were carried out in Xenopus laevis oocytes expressing two of the major L-type carriers in humans, LAT1—4F2 heavy chain (4F2hc) and LAT2—4F2hc. Oocytes expressing LAT1—4F2hc or LAT2—4F2hc demonstrated enhanced uptake of [14C]MeHg when administered as the l-cysteine or d,l-homocysteine complexes, but not when administered as the d-cysteine, N-acetyl-l-cysteine, penicillamine or GSH complexes. Kinetic analysis of transport indicated that the apparent affinities (Km) of MeHg—l-cysteine uptake by LAT1 and LAT2 (98±8 and 64±8μM respectively) were comparable with those for methionine (99±9 and 161±11μM), whereas the Vmax values were higher for MeHg—l-cysteine, indicating that it may be a better substrate than the endogenous amino acid. Uptake and efflux of [3H]methionine and [14C]MeHg—l-cysteine were trans-stimulated by leucine and phenylalanine, but not by glutamate, indicating that MeHg—l-cysteine is both a cis- and trans-substrate. In addition, [3H]methionine efflux was trans-stimulated by leucine and phenylalanine even in the presence of an inwardly directed methionine gradient, demonstrating concentrative transport by both LAT1 and LAT2. The present results describe a major molecular mechanism by which MeHg is transported across cell membranes and indicate that metal complexes may form a novel class of substrates for amino acid carriers. These transport proteins may therefore participate in metal ion homoeostasis and toxicity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3