The amounts of rat liver cyclic AMP-dependent protein kinase I and II are differentially regulated by diet

Author:

Ekanger R1,Vintermyr O K1,Døskeland S O1

Affiliation:

1. Cell Biology Group, Department of Anatomy, University of Bergen, Årstadveien 19, N-5009 Bergen, Norway

Abstract

1. The fluctuations in rat hepatocyte volume and protein content in response to dietary perturbations (starvation, protein restriction, refeeding) were accompanied by corresponding fluctuations in the amount of the regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase. Thus the intracellular concentration of this key enzyme was adjusted to be near constant. 2. The adjustment of cellular R was accomplished almost exclusively by regulating cytosolic RI (R subunit of type I kinase). The preferential down-regulation of cytosolic RI in response to starvation/protein restriction indicates that particulate RI and cytosolic as well as particulate RII are more resistant to breakdown during general catabolism in the hepatocyte. 3. The diet-induced fluctuations of kinase subunits were uniformly distributed in all populations of parenchymatous hepatocytes, regardless of their size and density. It is thus possible to isolate hepatocytes with uniformly altered RI/RII ratio from livers of rats with different feeding regimens. 4. The binding of endogenous cyclic AMP to RI and RII was similar in livers with high RI/RII ratio (fed rats) and low RI/RII ratio (fasted rats) as well as in hepatocytes isolated from fasted rats. Under the conditions of the experiment (short-term stimulation by glucagon), therefore, neither the dietary state nor the RI/RII ratio seemed to affect the apparent affinity of the isoreceptors for cyclic AMP. However, RI appeared to show a slightly higher co-operativity of intracellular cyclic AMP binding than did RII in all states.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3