Affiliation:
1. Laboratory for Molecular Cardiology, Departments of Clinical Biochemistry and Medicine, Banting Institute, University of Toronto, Toronto, Ontario, Canada M5G lL5
Abstract
A system for RNA transcription in vitro was established in order to determine the relative rate of RNA synthesis in neonatal and adult rat myocardial cells. This assay system optimizes the incorporation of [3H]UMP into RNA by using 3.5 x 10(7) myocardial-cell nuclei, and minimizes RNA degradation for at least 1 h in transcription in vitro, by the addition of human placental RNAase inhibitor. A 100% increase in the incorporation of [3H]UMP into myocardial-cell RNA was found on addition of this inhibitor. Myocardial-cell nuclei derived from 5-, 10-, 15-, 20-, and greater than 100-day-old rat hearts indicated that there is a progressive decrease in RNA synthesis with age. A 3-fold increase in RNA synthesis in 5-day-old myocardial cell nuclei as compared with 20-day-old rat heart was found. RNA synthesis in the adult myocardial cell nuclei decreased more than 10-fold in comparison with the 5-day-old newborn. The incorporation of [3H]UMP into rat liver nuclear RNA was 3-fold greater than in the myocardial-cell nuclear RNA, even when compared with the highly active transcription of 12-day-old heart nuclei. In order to determine the relationship between total RNA synthesis and the extent of specific gene expression in myocardial-cell nuclei during development, two distinct cDNA probes were used for Northern-blot analysis. Our results indicate that myosin-heavy-chain gene expression is remarkably decreased with age, whereas the ‘housekeeping’ gene is continually expressed independently of age.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献