Identification of transcriptional and phosphatase regulators as interaction partners of human ADA3, a component of histone acetyltransferase complexes

Author:

Zencir Sevil1,Sike Adam2,Dobson Melanie J.3,Ayaydin Ferhan4,Boros Imre2,Topcu Zeki5

Affiliation:

1. Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli 20070, Turkey

2. Department of Biochemistry and Molecular Biology, Szeged University, Szeged H-6726, Hungary

3. Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2

4. Cellular Imaging Laboratory, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62, Hungary

5. Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey

Abstract

ADA (alteration/deficiency in activation) 3 is a conserved component of several transcriptional adaptor and HAT (histone acetyltransferase) complexes that regulate RNA polymerase II-mediated gene expression. Within the HAT complexes ADA3 is associated with ADA2 and the HAT GCN5 (general control non-repressed 5). ADA3 plays roles in diverse cellular processes and also in malignancies by modulating GCN5 catalytic activity and/or by interactions with other regulators. To gain a better understanding of ADA3 function, we used a yeast two-hybrid approach to screen a human fetal cDNA library for proteins that interacted with hADA3 (human ADA3). We identified three novel hADA3-interacting partners, a transcriptional regulator, AATF (apoptosis-antagonizing transcription factor), and regulatory subunits of the PP1 (protein phosphatase 1) and PP2A (protein phosphatase 2A) [PPP1R7 (PP1 regulatory subunit 7) and PPP2R5D (PP2A 56 kDa regulatory subunit δ isoform) respectively]. Analysis of truncated versions of hADA3 indicated that the C-terminal ADA2-interacting domain was not required for these interactions. Fluorescent microscopy analysis and co-immunoprecipitation provided support for the co-localization and interaction of hADA3 with these proteins in human cells. Expression of the interacting proteins altered expression of an hADA3-regulated reporter gene, suggesting functional consequences for the interactions. The detected interactions of hADA3 might extend the spectrum of mechanisms by which ADA3 can contribute to the regulation of gene expression and shed light on processes mediated by these newly identified ADA3 partners.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3