Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum

Author:

Rossi Daniela12,Bencini Cristina1,Maritati Marina1,Benini Francesca1,Lorenzini Stefania1,Pierantozzi Enrico1,Scarcella Angela Maria1,Paolini Cecilia23,Protasi Feliciano23,Sorrentino Vincenzo12

Affiliation:

1. Department of Molecular and Developmental Medicine, University of Siena, Via A Moro 2, 53100 Siena, Italy

2. Interuniversity Institute of Myology

3. CeSI-Center for Research on Ageing and DNI (Department of Neuroscience and Imaging), Università Gabriele d’Annunzio of Chieti, 66100 Chieti, Italy

Abstract

Ca2+ release, which is necessary for muscle contraction, occurs at the j-SR (junctional domain of the sarcoplasmic reticulum). It requires the assembly of a large multiprotein complex containing the RyR (ryanodine receptor) and additional proteins, including triadin and calsequestrin. The signals which drive these proteins to the j-SR and how they assemble to form this multiprotein complex are poorly understood. To address aspects of these questions we studied the localization, dynamic properties and molecular interactions of triadin. We identified three regions, named TR1 (targeting region 1), TR2 and TR3, that contribute to the localization of triadin at the j-SR. FRAP experiments showed that triadin is stably associated with the j-SR and that this association is mediated by TR3. Protein pull-down experiments indicated that TR3 contains binding sites for calsequestrin-1 and that triadin clustering can be enhanced by binding to calsequestrin-1. These findings were confirmed by FRET experiments. Interestingly, the stable association of triadin to the j-SR was significantly decreased in myotubes from calsequestrin-1 knockout mice. Taken together, these results identify three regions in triadin that mediate targeting to the j-SR and reveal a role for calsequestrin-1 in promoting the stable association of triadin to the multiprotein complex associated with RyR.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3