Meta-analysis based gene expression profiling reveals functional genes in ovarian cancer

Author:

Zhao Lin1,Li Yuhui2,Zhang Zhen1,Zou Jing3,Li Jianfu4,Wei Ran1,Guo Qiang1,Zhu Xiaoxiao1,Chu Chu1,Fu Xiaoxiao1,Yue Jinbo5,Li Xia1ORCID

Affiliation:

1. Department of Oncology, Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 18877 Jingshi Road, Jinan 250062, China

2. Department of Outpatient, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440, Ji Yan Road, Jinan 250117, China

3. Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhua Xi Road, Jinan 250011, China

4. Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX, U.S.A.

5. Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440, Ji Yan Road, Jinan 250117, China

Abstract

Abstract Background: Ovarian cancer causes high mortality rate worldwide, and despite numerous attempts, the outcome for patients with ovarian cancer are still not well improved. Microarray-based gene expressional analysis provides with valuable information for discriminating functional genes in ovarian cancer development and progression. However, due to the differences in experimental design, the results varied significantly across individual datasets. Methods: In the present study, the data of gene expression in ovarian cancer were downloaded from Gene Expression Omnibus (GEO) and 16 studies were included. A meta-analysis based gene expression analysis was performed to identify differentially expressed genes (DEGs). The most differentially expressed genes in our meta-analysis were selected for gene expression and gene function validation. Results: A total of 972 DEGs with P-value < 0.001 were identified in ovarian cancer, including 541 up-regulated genes and 431 down-regulated genes, among which 92 additional DEGs were found as gained DEGs. Top five up- and down-regulated genes were selected for the validation of gene expression profiling. Among these genes, up-regulated CD24 molecule (CD24), SRY (sex determining region Y)-box transcription factor 17 (SOX17), WFDC2, epithelial cell adhesion molecule (EPCAM), innate immunity activator (INAVA), and down-regulated aldehyde oxidase 1 (AOX1) were revealed to be with consistent expressional patterns in clinical patient samples of ovarian cancer. Gene functional analysis demonstrated that up-regulated WFDC2 and INAVA promoted ovarian cancer cell migration, WFDC2 enhanced cell proliferation, while down-regulated AOX1 was functional in inducing cell apoptosis of ovarian cancer. Conclusion: Our study shed light on the molecular mechanisms underlying the development of ovarian cancer, and facilitated the understanding of novel diagnostic and therapeutic targets in ovarian cancer.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3