Auxiliary functions in photosynthesis: the role of the FtsH protease

Author:

Bailey S.1,Silva P.2,Nixon P.2,Mullineaux C.3,Robinson C.1,Mann N.1

Affiliation:

1. Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, U.K.

2. Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, U.K.

3. Department of Biology, University College London, Gower Street, London WCIE 6BT, U.K.

Abstract

Oxygenic photosynthesis can be described effectively by using two long-standing models: the Z-scheme and the chemiosmotic hypothesis. However, these models do not reveal the dynamic nature of the thylakoid membrane and the four major complexes that it binds. The composition of the photosynthetic apparatus is continually changing in response to a range of environmental stimuli. In addition, many photosynthetic components have some of the highest turnover rates in Nature. Changes in composition and turnover of photosynthetic components require the degradation of existing and damaged polypeptides and the resynthesis and co-ordinated assembly of new polypeptides and their associated cofactors. This is achieved by several auxiliary functions, including proteolysis, protein targeting and the action of molecular chaperones. Some of the components involved in these functions, such as translocons, chaperones and proteases, have been identified but many of the auxiliary functions of photosynthesis remain uncharacterized. Among the proteases known to be associated with the thylakoids is the zinc metalloprotease FtsH, which might also act as a chaperone. Here we provide an overview of the thylakoid FtsH protease and discuss its role in the maintenance and assembly of the photosynthetic apparatus.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3