Affiliation:
1. CNRS UPR1261, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
2. UPR 9052, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
Abstract
Studies of the biogenesis of the photosynthetic protein complexes in the unicellular green alga Chlamydomonas reinhardtii have pointed to the importance of the concerted expression of nuclear and chloroplast genomes. The accumulation of chloroplast- and nuclear-encoded subunits is concerted, most often as a result of the rapid proteolytic disposal of unassembled subunits, but the rate of synthesis of some chloroplast-encoded subunits from photosynthetic protein complexes, designed as CES proteins (Controlled by Epistasy of Synthesis), is regulated by the availability of their assembly partners from the same complex. Cytochrome f, a major subunit of the cytochrome b6f complex is a model protein for the study of the CES process. In the absence of subunit IV, another subunit of the cytochrome b6f complex, its synthesis is decreased by 90%. This results from a negative autoregulation of cytochrome f translation initiation, mediated by a regulatory motif carried by the C-terminal domain of the unassembled protein [Choquet, Stern, Wostrikoff, Kuras, Girard-Bascou and Wollman (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4380–4385]. Using site-directed mutagenesis, we have characterized this regulatory motif. We discuss the possible implications regarding the mechanism of the CES process for cytochrome f expression. We have studied the possible generalization of this mechanism to other CES proteins.
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献