Structural evidence for multiple transport mechanisms through the Golgi in the pancreatic β-cell line, HIT-T15

Author:

Marsh B. J.1,Mastronarde D. N.1,McIntosh J. R.1,Howell K. E.2

Affiliation:

1. Boulder Laboratory for 3-D Fine Structure, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, U.S.A.

2. Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver, CO 80262, U.S.A.

Abstract

Accurate data on the three-dimensional architecture of the Golgi is prerequisite for evaluating the mechanisms of transit through this organelle. Here we detail the structure of the Golgi ribbon within part of an insulin-secreting cell in three dimensions at ~ 6 nm resolution. Rapid freezing, freeze-substitution and electron tomography were employed. The Golgi in this region is composed of seven cisternae. The cis-most element is structurally intermediate between the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and the cis-most cisterna characterized in three dimensions at high resolution in a normal rat kidney cell [Ladinsky, Mastronarde, McIntosh, Howell and Staehelin (1999) J. Cell Biol. 144, 1135–1149]. There are three trans-cisternae that demonstrate morphological and functional variation. The membrane surface areas and volumes of these elements decrease from cis to trans. The two trans-most cisternae are dissociated from the stack and are fragmented by tubulation. ER closely adheres to and inserts between individual trans-cisternae. Many of the 2119 small, clathrin-negative vesicles that are in close proximity to the Golgi fill the region where trans-cisternae have moved out of register with the ribbon. These data provide evidence that cisternal progression/maturation, trafficking via membrane tubules and vesicle-mediated transport act in concert in the same region of the Golgi ribbon, and suggest an important role for the ER in regulating membrane dynamics at the trans-Golgi.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3