Relevance of hepatic lipase to the metabolism of triacylglycerol-rich lipoproteins

Author:

Zambon A.1,Bertocco S.1,Vitturi N.1,Polentarutti V.1,Vianello D.1,Crepaldi G.1

Affiliation:

1. Department of Medical and Surgical Sciences, Clinica Medica 1, University of Padua, Via Giustiniani, 2, 35128 Padova, Italy

Abstract

HL (hepatic lipase) is a glycoprotein that is synthesized and secreted by the liver, and which binds to heparan sulphate proteoglycans on the surface of sinusoidal endothelial cells and on the external surface of parenchymal cells in the space of Disse. HL catalyses the hydrolysis of triacylglycerols and phospholipids in different lipoproteins, contributing to the remodelling of VLDL (very-low-density lipoprotein) remnants, as well as IDL, LDL and HDL (intermediate-, low- and high-density lipoprotein respectively). HL deficiency in humans is associated with diminished conversion of VLDL remnants into IDL and a near-complete absence of IDL-to-LDL conversion. Remnant lipoproteins and IDL are major determinants of coronary artery disease risk, and accumulation of these lipoproteins in the presence of low HL activity might lead to increased atherosclerosis. In addition to and independently of its lipolytic activity, HL participates as a ligand in promoting the hepatic uptake of remnants and IDL particles, and the latter may represent an additional mechanism linking low HL levels to plasma accumulation of these atherogenic lipoproteins. On the other hand, high HL activity may also result in an increased atherosclerotic risk by promoting the formation of atherogenic small, dense LDL particles. Finally, HL is also synthesized by human macrophages, suggesting that, at the arterial wall site, HL may also contribute locally to promote atherosclerosis by enhancing the formation and retention in the subendothelial space of the arterial wall of VLDL remnants, IDL and small, dense LDL. In conclusion, by interfering with the metabolism of apolipoprotein B100-containing lipoproteins, HL may have pro- as well as anti-atherogenic effects. The anti- or pro-atherogenic role of HL is likely to be modulated by the concurrent presence of other lipid abnormalities (i.e. LDL-cholesterol levels), as well as by the genetic regulation of other enzymes involved in lipoprotein metabolism.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3