Abstract
1. The fluorescence and circular dichroism of four homogeneous preparations of ATPase (adenosine triphosphatase) from Micrococcus lysodeikticus differing in molecular structure and enzymic properties were examined at pH 7.5 and 25 degrees. Emission was maximum at 325 and 335 nm and the relative intensities at these wavelengths may be used to characterize the different ATPase preparations. The circular-dichroism spectra exhibited negative extrema at 208 and 220 nm, and the relative value of the molar ellipticity at these wavelengths was also different for each molecular form of the enzyme. 2. The four preparations undergo two consecutive major unfolding transitions in guanidinium chloride (midpoints at 0.94 and 1.5 M denaturant), with concomitant destruction of the quaternary structure of the protein. A comparatively minor alteration in the ATPase structure also occurred in 0.05-0.2M-guanidine and led to complete inactivation of the enzyme. The inactivation and the first unfolding transition were reversible by dilution of the denaturant; the transition with midpoint at 1.5M-guanidine was irreversible. 3. Similar results were obtained in urea, except that the successive transitions had midpoints at concentrations of denaturant of 0.4, 2.0 and 4.5M. Low concentrations of urea caused a noticeable activation of the enzyme activity and alterations of the electrophoretic mobility of the ATPase. 4. A model is proposed in which one of the major subunits, alpha, is first dissociated and unfolded reversibly by the denaturants, followed by the irreversible unfolding and dissociation of the other major subunit, beta, from subunit delta and/or the components of relative mobility 1.0 in dodecyl sulphate/polyacrylamide-gel electrophoresis (rho).
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献