Extraction and characterization of proteoglycan from human meniscus

Author:

McNicol D,Roughley P J

Abstract

This study consists of (1) the extraction of proteoglycan from the human meniscus under dissociative conditions, (2) an investigation of the changes that occur in the abundance and structure of this proteoglycan with age and (3) a comparison of these findings with those for human articular-cartilage proteoglycan. Adult meniscus was found to possess proteoglycan molecules of similar size and glycosaminoglycan content to those present in cartilage, although tissue concentrations were considerably lower. In addition, age-related changes, with respect to the occurrence of keratan sulphate and the sulphation of chondroitin sulphate chains, were common to both tissues. The presence of aggregated proteoglycan was demonstrated, although specific interaction with hyaluronic acid was not conclusively shown biochemically. Differences were, however, noted in the structure of the proteoglycan between the two tissues: dermatan sulphate was found in the meniscus proteoglycan preparation and the core proteins exhibited some dissimilarities. A proteoglycan structure of this type would be compatible with its participation in meniscus elasticity, especially as the material is localized in a specific area.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degradation of Proteoglycans and Collagen in Equine Meniscal Tissues;International Journal of Molecular Sciences;2024-06-11

2. Cell biology and pathology of cartilage and meniscus;Cartilage Tissue and Knee Joint Biomechanics;2024

3. Removal of GAGs Regulates Mechanical Properties, Collagen Fiber Formation, and Alignment in Tissue Engineered Meniscus;ACS Biomaterials Science & Engineering;2023-02-21

4. Non-hypertrophic chondrogenesis of mesenchymal stem cells through mechano-hypoxia programing;Journal of Tissue Engineering;2023-01

5. Meniscus tissue engineering and repair;Musculoskeletal Tissue Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3