mVps34 is activated by an acute bout of resistance exercise

Author:

MacKenzie M.G.1,Hamilton D.L.1,Murray J.T.2,Baar K.1

Affiliation:

1. James Black Centre, University of Dundee, 28 Dow Street, Dundee DD15EH, U.K.

2. Centre for Cancer Research and Cell Biology, The Queen's University, Belfast, U.K.

Abstract

Resistance-exercise training results in a progressive increase in muscle mass and force production. Following an acute bout of resistance exercise, the rate of protein synthesis increases proportionally with the increase in protein degradation, correlating at 3 h in the starved state. Amino acids taken immediately before or immediately after exercise increase the post-exercise rate of protein synthesis. Therefore a protein that controls protein degradation and amino acid-sensitivity would be a potential candidate for controlling the activation of protein synthesis following resistance exercise. One such candidate is the class III PI3K (phosphoinositide 3-kinase) Vps34 (vacuolar protein sorting mutant 34). Vps34 controls both autophagy and amino acid signalling to mTOR (mammalian target of rapamycin) and its downstream target p70 S6K1 (S6 kinase 1). We have identified a significant increase in mVps34 (mammalian Vps34) activity 3 h after resistance exercise, continuing for at least 6 h, and propose a mechanism whereby mVps34 could act as an internal amino acid sensor to mTOR after resistance exercise.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3