Affiliation:
1. Department of Haematology, Imperial College Faculty of Medicine, DuCane Road, London W12 0NN, U.K.
Abstract
The biology of CML (chronic myeloid leukaemia) has been extensively investigated as the disease is a paradigm of neoplasms induced when a translocation results in expression of a novel fusion protein, in this instance p210BCR-ABL. Although CML manifests itself principally as unregulated expansion of the myeloid lineage, the lesion is present in the stem cell population and it has long been assumed that disregulated stem cell kinetics must underlie the basic pathology of the disease. In this review, we present evidence that, in normal haemopoiesis, less primitive precursor cells retain considerable flexibility in their capacity to undergo self-renewal, allowing them to maintain lineage-specific homoeostasis without inflicting proliferative stress upon the stem cell population. This mechanism is dysregulated in CML and we have developed a self-renewal assay for CFU-GM (colony-forming unit-granulocyte/macrophage) which demonstrates that, in CML, the PI (proliferative index) of the myeloid progenitor cell population is increased. The ability to measure the PI as an endpoint of p210BCR-ABL expression gives considerable versatility to the in vitro investigation of putative therapeutic regimes in CML.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献