Towards using 3D cellular cultures to model the activation and diverse functions of macrophages

Author:

Cutter Sean1,Wright Mark D.2,Reynolds Nicholas P.1,Binger Katrina Jean123ORCID

Affiliation:

1. 1Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia

2. 2Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia

3. 3Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

The advent of 3D cell culture technology promises to enhance understanding of cell biology within tissue microenvironments. Whilst traditional cell culturing methods have been a reliable tool for decades, they inadequately portray the complex environments in which cells inhabit in vivo. The need for better disease models has pushed the development of effective 3D cell models, providing more accurate drug screening assays. There has been great progress in developing 3D tissue models in fields such as cancer research and regenerative medicine, driven by desires to recreate the tumour microenvironment for the discovery of new chemotherapies, or development of artificial tissues or scaffolds for transplantation. Immunology is one field that lacks optimised 3D models and the biology of tissue resident immune cells such as macrophages has yet to be fully explored. This review aims to highlight the benefits of 3D cell culturing for greater understanding of macrophage biology. We review current knowledge of macrophage interactions with their tissue microenvironment and highlight the potential of 3D macrophage models in the development of more effective treatments for disease.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3