The RNA cap methyltransferases RNMT and CMTR1 co-ordinate gene expression during neural differentiation

Author:

Liang Shang12,Almohammed Rajaei12,Cowling Victoria H.12ORCID

Affiliation:

1. 1Cancer Research UK Beatson Institute, Glasgow, U.K.

2. 2School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, U.K.

Abstract

Regulation of RNA cap formation has potent impacts on gene regulation, controlling which transcripts are expressed, processed and translated into protein. Recently, the RNA cap methyltransferases RNA guanine-7 methyltransferase (RNMT) and cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (CMTR1) have been found to be independently regulated during embryonic stem (ES) cell differentiation controlling the expression of overlapping and distinct protein families. During neural differentiation, RNMT is repressed and CMTR1 is up-regulated. RNMT promotes expression of the pluripotency-associated gene products; repression of the RNMT complex (RNMT–RAM) is required for repression of these RNAs and proteins during differentiation. The predominant RNA targets of CMTR1 encode the histones and ribosomal proteins (RPs). CMTR1 up-regulation is required to maintain the expression of histones and RPs during differentiation and to maintain DNA replication, RNA translation and cell proliferation. Thus the co-ordinate regulation of RNMT and CMTR1 is required for different aspects of ES cell differentiation. In this review, we discuss the mechanisms by which RNMT and CMTR1 are independently regulated during ES cell differentiation and explore how this influences the co-ordinated gene regulation required of emerging cell lineages.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3