Abstract
Evidence has accumulated in support of a role for intracellularly generated inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in raising cytosol [Ca2+] when various hormones, neurotransmitters, growth factors and other stimulants act on cell surfaces. The increase in [Ca2+] that follows stimulant-receptor interaction is accompanied by rapid hydrolysis of phosphoinositides. One product, Ins(1,4,5)P3, arising from the breakdown of phosphatidylinositol 4,5-bisphosphate was shown to promote the release of Ca2+ from non-mitochondrial stores in a variety of cells. Although platelet intracellular membranes have been implicated in the control of cytosol [Ca2+] and we previously characterized a Ca2+-sequestering mechanism associated with them, we have as yet no knowledge of how this Ca2+ store is mobilized after a stimulus-receptor interaction at the platelet surface. Using free-flow electrophoresis, we isolated and purified human platelet intracellular membranes. They show high enrichment and exclusive localization of the endoplasmic-reticulum marker NADH:cytochrome c reductase, and they sequester Ca2+ by an ATP-dependent process, reaching steady-state values in 10-12 min. Saturation with Ca2+ occurs at around 10-30 microM external Ca2+. When Ins(1,4,5)P3 is added to the 45Ca-loaded vesicles, a rapid release of Ca2+ occurs (approx. 35% in 15-30s). The magnitude of the release depends upon external [Ca2+], being maximum in the range 0.3-0.8 microM and low at external [Ca2+] greater than 1 microM. After release there is a rapid re-uptake of Ca2+, with restoration of the former steady-state values within 1 min. Half-maximal release occurs at approx. 0.25 microM-Ins(1,4,5)P3. This release and re-uptake pattern is not observed with ionophore A23187 or arachidonic acid, both of which liberate Ca2+ irreversibly. Inositol 1,4-bisphosphate was ineffective in releasing Ca2+ from these intracellular membranes. The results support the role of Ins(1,4,5)P3 as a specific intracellular mediator, transducing the action of excitatory agonists acting on the platelet surface into metabolic, mechanochemical and other functional events, known to occur during platelet activation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献