Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance

Author:

Balasubramanian Adithya123,John Thomas3,Asselin-Labat Marie-Liesse12ORCID

Affiliation:

1. Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia

2. Department of Medical Biology, The University of Melbourne, Parkville, Australia

3. Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, Australia

Abstract

Evading immune destruction is one of the hallmarks of cancer. A key mechanism of immune evasion deployed by tumour cells is to reduce neoantigen presentation through down-regulation of the antigen presentation machinery. MHC-I and MHC-II proteins are key components of the antigen presentation machinery responsible for neoantigen presentation to CD8+ and CD4+ T lymphocytes, respectively. Their expression in tumour cells is modulated by a complex interplay of genomic, transcriptomic and post translational factors involving multiple intracellular antigen processing pathways. Ongoing research investigates mechanisms invoked by cancer cells to abrogate MHC-I expression and attenuate anti-tumour CD8+ cytotoxic T cell response. The discovery of MHC-II on tumour cells has been less characterized. However, this finding has triggered further interest in utilising tumour-specific MHC-II to harness sustained anti-tumour immunity through the activation of CD4+ T helper cells. Tumour-specific expression of MHC-I and MHC-II has been associated with improved patient survival in most clinical studies. Thus, their reactivation represents an attractive way to unleash anti-tumour immunity. This review provides a comprehensive overview of physiologically conserved or novel mechanisms utilised by tumour cells to reduce MHC-I or MHC-II expression. It outlines current approaches employed at the preclinical and clinical trial interface towards reversing these processes in order to improve response to immunotherapy and survival outcomes for patients with cancer.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3