Umbilical cord mesenchymal stem cells from gestational diabetes show impaired ability to up-regulate paracellular permeability from sub-endothelial niche

Author:

Salem Samar1ORCID,Leach Lopa1

Affiliation:

1. School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, U.K.

Abstract

Abstract In vitro studies have shown that Wharton’s jelly mesenchymal stem cells (WJ-MSCs) can cross umbilical and uterine endothelial barriers and up-regulate endothelial junctional integrity from sub-endothelial niches. This pericytic behaviour may be lost in pregnancies complicated by gestational diabetes (GDM), where increased vascular permeability and junctional disruption are reported. The aim of the present study was to investigate whether WJ-MSCs isolated from GDM pregnancies displayed any changes in morphology, proliferation, VEGF-A secretion, and their ability to influence paracellular junctional composition and permeability. WJ-MSCs were isolated from human umbilical cords from normal pregnancies (nWJ-MSCs, n=13) and those complicated by GDM (gWJ-MSCs), either diet-controlled (d-GDM, n=13) or metformin-treated (m-GDM, n=9). We recorded that 4-fold more WJ-MSCs migrated from m-GDM, and 2.5-fold from d-GDM cord samples compared with the normal pregnancy. gWJ-MSCs showed a less predominance of spindle-shaped morphology and secreted 3.8-fold more VEGF-A compared with nWJ-MSCs. The number of cells expressing CD105 (Endoglin) was higher in gWJ-MSCs compared with nWJ-MSCs (17%) at P-2. The tracer leakage after 24 h across the HUVEC + gWJ-MSCs bilayer was 22.13% and 11.2% higher in the m-GDM and d-GDM, respectively, HUVEC + nWJ-MSCs. Transfection studies with siRNAs that target Endoglin were performed in n-WJ-MSCs; transfected cells were co-cultured with HUVEC followed by permeability studies and VE-cadherin analyses. Loss of Endoglin also led to increased VEGF-A secretion, increased permeability and affected endothelial stabilization. These results reinforce the pericytic role of nWJ-MSCs to promote vascular repair and the deficient ability of gWJ-MSCs to maintain endothelial barrier integrity.

Funder

Cultural Affairs and Missions Sector, Ministry of Higher Education

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3